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Relaxation in graph coloring and satisfiability problems
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Using T50 Monte Carlo simulation, we study the relaxation of graph coloring~K-COL! and satisfiability
~K-SAT!, two hard problems that have recently been shown to possess a phase transition in solvability as a
parameter is varied. A change from exponentially fast to power law relaxation, and a transition to freezing
behavior are found. These changes take place for smaller values of the parameter than the solvability transition.
Results for the coloring problem for colorable and clustered graphs and for the fraction of persistent spins for
satisfiability are also presented.@S1063-651X~99!09904-3#

PACS number~s!: 75.10.Hk, 75.10.Nr, 02.10.Eb, 89.80.1h
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I. INTRODUCTION

Computers have made it possible for physicists to do
periments without leaving their offices. By simulating sy
tems from nature, or simple models from theoretical phys
a tremendous amount of information can be gained. The
vance of computer hardware and software has made it
sible to simulate systems consisting of vast numbers of
teracting particles. Physics, in turn, has inspired n
algorithms for solving problems in computer science. F
instance, the method of simulated annealing@1#, based on
Monte Carlo simulations with the Metropolis algorithm@2#,
can sometimes find good solutions much quicker than tr
tional algorithms@3#.

Physicists have also started to study systems that are
found in nature, but instead come from computer scie
@4,5#. As an example, phase transitions in optimization pr
lems have been discovered and studied using statistical
chanics@6,7#. Other problems studied using physical me
ods include the knapsack problem@8#, graph partitioning@9#,
minimax games@10#, the 8-Queens problem@11#, number
partitioning @12,13#, and the stable marriage problem@14#.
Field theory has also been used to study, e.g., the enum
tion of Hamiltonian cycles on graphs@15# and coloring of
random, planar graphs@16,17#.

Here we present a study of theT50 relaxation behavior
of hard optimization problems. Using Monte Carlo simu
tion, we have measured the energy of a system starting
random~excited! state and slowly relaxing into the groun
state or a low-lying excited state. We find qualitatively d
ferent behavior for hard and easy instances of the proble
One of many models~e.g., @18#! for which relaxation has
been studied is the ferromagnetic Ising model on a reg
lattice. The models studied here differ from the Ising mo
in several respects. They are random, i.e., there is no pa
in the interactions between the spins, and the interact
have infinite range. K-COL can be viewed as a Potts mo
on a random graph with finite connectivity. Another impo
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tant difference is that these models can suffer from frus
tion.

This article is organized in the following way: Section
introduces some concepts from computer science, while
problems we study are described in Sec. III. Previous w
on the solvability transition is reviewed in Sec. IV and som
approximate explanations in Sec. V. Section VI describ
our results on the relaxation behavior, Sec. VII compares
results to other local search methods. Additional measu
ments, e.g., of the fraction of persistent spins, are found
Sec. VIII. Section IX discusses possible explanations for
relaxation behavior and comments on the importance of
tropy barriers. Conclusions and a discussion are containe
Sec. X.

II. COMPUTER SCIENCE FOR PHYSICISTS

Computer scientists classify problems according to
maximal amount of resources needed for their solution. T
most important resource is time, but it is also possible
distinguish between problems that require qualitatively d
ferent amounts of memory. For example, a list ofN elements
can always be sorted in time less thankN ln N, wherek is
some constant@19#. The problems whose running time on
universal Turing machine~e.g.,@20#! is bounded by a poly-
nomial in their size are said to be in the class P. The imp
tant class NP~for nondeterministic polynomial! consists of
those problems where it can be checked in polynomial ti
whether a proposed solution actually solves the problem~A
nondeterministicTuring machine would be able to solve N
problems in polynomial time.! It is obvious that P#NP, but
there is no proof that PÞNP. However, most people believ
that there are NP problems whose worst-case instances
exponential time to solve on a universal Turing machine.

The class NP-complete~or NPC! are the most importan
problems in NP. A problem of sizeN is in NPC if all other
NP problems can be transformed into it in time at most po
nomial in N. A method to solve an NPC problem efficient
can thus be used to solve any NP problem efficiently. It
known that if PÞNP then there are problems in NP that a
in neither P nor NPC. A problem is called NP-hard if it is
least as difficult as the most difficult NP problems; NPC
the intersection of NP and NP-hard.
3983 ©1999 The American Physical Society
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3984 PRE 59PONTUS SVENSON AND MATS G. NORDAHL
It is worth emphasizing that it is the worst-case comple
ity that determines whether a problem is in NPC. The av
age time needed to solve an NPC problem~given a distribu-
tion of problems! may still be polynomial in problem size
The properties of K-COL and K-SAT studied here are
lated to average case behavior, and do not address the
tion of whether PÞNP.

A nice introduction to most elementary concepts fro
theoretical computer science can be found in@21#. A modern
reference on complexity theory and NP problems is@22#,
while @23# has an extensive list of NPC problems.

III. K-SAT AND K-COL

Two important problems in NPC are graph coloring~K-
COL! and satisfiability testing~SAT!. Graph coloring is the
problem of coloring a graph withN vertices andM edges
usingK colors so that no two adjacent vertices have the sa
color. In physical terms, K-COL is the problem of finding
ground state without frustrated bonds in an antiferromagn
K-state Potts model on a random graph. Related models
been studied by Baillie, Johnston, and coworkers~e.g.,
@24,25#!, who considered Potts models onfn-model Feyn-
man diagrams. They found similarities between models
f3 andf4 graphs and Bethe lattices, and showed that me
field theories work well for describing both ferromagne
and antiferromagnetic models in Feynman diagrams.

The most natural application of graph coloring is
scheduling problems. For example, a school where e
teacher and student can be involved in several differ
classes must schedule the classes so that no collisions o
If there areK different time slots available, this is K-COL.

Satisfiability was the first problem shown to be in NP
@26#. It is the problem of finding an assignment of true
false to N variables so that a boolean formula in them
satisfied. In K-SAT, this formula is written inconjunctive
normal form~CNF!, that is, it consists of the logical AND o
M clauses, each clause being the OR ofK ~possibly negated!
variables, where the same clause may appear more than
in a formula. For example, (x~y)`(y~¬z) is an instance
of 2-SAT with two clauses and three variables. Applicatio
of K-SAT include theorem proving, VLSI design, and lear
ing.

In K-SAT, each clause forbids one of the 2K possible
assignments for its variables. In the same way, an edge
graph forbidsK of the K2 different colorings of its vertices
For both problems, there areM constraintson the solutions.
The energye of a problem instance is defined as the num
of unsatisfied constraints per variable. Both K-SAT a
K-COL are in P forK52 and in NPC forK>3 @23#. The
related problem~MAX-K-SAT ! of trying to minimize the
number of unsatisfied clauses in K-SAT is in NPC even
K52.

The most important problems are those where the num
of constraints is of the same order as the number of variab
M5aN. The scheduling problem described above fulfi
this condition, for example. For graph coloring,a5g/2,
whereg is theconnectivityof the graph. The connectivity~or
average degree! is defined as the mean number of edges
iting each node. For a graph withn vertices ande edges, it is
2e/n.
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Below, we will usea for K-SAT andg when we talk of
K-COL. We will concentrate on K-COL; most results fo
K-SAT are similar.

IV. TRANSITION

For physicists, an interesting property of these proble
is that they contain phase transitions@7,27,28#. As the num-
ber of constraints increases, there is a transition from a
gion where almost all instances of the problem are solva
to a region where practically none can be solved. Physica
the transition is from a region where the ground state
zero energy to one where it is finite. ForK52 the transition
can be seen as a transition between a P problem~finding a
perfect solution to the problem! and an NPC problem~find-
ing an assignment of variables that minimizes the numbe
unsatisfied constraints!.

An approximation similar to mean-field theory has be
used by Williams and Hogg~e.g.,@29#! and others to explain
some of the properties of the phase transition. Recen
Friedgut has also made some progress towards showing
orously the existence of a sharp transition in solvability
both K-SAT @30# and K-COL @31#.

Related to this phase transition in problem solvabili
there is a transition in how difficult it is to solve a problem
show that no solutions exist@27,32,33#. If there are few con-
straints on the solution~the problem isunderconstrained!, it
is easy to find one. Similarly, if there are so many constra
that the problem isoverconstrained, not much effort is
needed to show that it is unsolvable. In between these
gions, where the problems arecritically constrained, there is
a peak in problem difficulty. This is called the ‘‘easy-har
easy’’ transition@32#.

K-SAT has recently been studied by a number of phy
cists. Kirkpatrick and Selman@7# studied the phase transitio
using finite-size scaling methods, and Monasson a
Zecchina@34# used the replica method@35# to show that the
entropy of K-SAT stays finite at the transition. This mea
that below the transition there are several solutions to e
problem, all of which develop inconsistencies as the criti
a is passed. Another problem that has been studied u
statistical mechanics is the number partitioning proble
Mertens has recently shown that it too has a phase trans
@13#. The relevant parameter here is the ratio between
number of bits of input data and the number of variables

Another problem in NPC that also shows a transition@36#
is the traveling salesperson problem~TSP!, where the objec-
tive is to find a tour of minimum length visitingN given
distinct cities. A difficulty in studying this problem is tha
there is no natural parameter~like a and g) that distin-
guishes between under- and overconstrained problems
get one, the TSP must be reformulated as a decision p
lem: is there a Hamiltonian path of length less thanl? The
parameterl plays the same roˆle asa — for a given distribu-
tion of problems there is anl c such that ifl @ l c , almost all
instances have a tour with length, l , but if l ! l c practically
no such tours exist. Traditionally, most NPC problems
formulated as decision rather than optimization problems

There are many NPC problems that contain no obvio
parameter, which makes it difficult to say if the solvabili
phase transition exists in all NPC problems or in just a fe
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PRE 59 3985RELAXATION IN GRAPH COLORING AND . . .
There have been attempts to formulate a more general
rameter~e.g.,@37#!, with the drawback that it requires us t
approximate the number of solutions.

Phase transitions have also been found in problems
yond NPC, e.g., in QSAT@38#, a harder version of satisfi
ability where the boolean variables are quantified by eithe;
or ' ~in ordinary SAT, all variables are existentially quan
fied!. This problem is known to be PSPACE complete@22#,
meaning that it is at least as hard as all problems that ca
solved by a universal Turing machine without time limits b
using memory at most polynomial in problem size.

V. AN APPROXIMATE THEORY FOR THE TRANSITION

The approximation proposed by Williams and Ho
@6,29# assumes that the constraints in the problem are in
pendent. In physical terms it simply means performing
annealed rather than a quenched average over the disord
is exact for graphs without loops and for satisfiability pro
lems where no variable is contained in more than one cla
The probability that an independent constraint is violated
p51/2K for K-SAT and p5K/K251/K for K-COL. The
probability of having none ofM constraints violated can b
approximated as (12p)M, ignoring correlations betwee
constraints, such as triangles in graphs. The number of s
tions for K-COL is then

Nsol5KNS 12
1

K D gN/2

, ~1!

and for K-SAT the expression is

Nsol52NS 12
1

2KD aN

. ~2!

Using the inclusion-exclusion principle it is possible
write an exact expression forNsol @6#. The inclusion-
exclusion principle is the generalization of the simple fo
mula

P~AøB!5P~A!1P~B!2P~AùB!

from mathematical statistics. If we letAi be the event tha
constrainti is violated, it expresses the probability that a
~i.e., at least one! constraint is violated in terms of the prob
abilities of one, two, three, or more constraints being v
lated simultaneously,

P~ø iAi !5(
r 51

M

~21!r 11Sr , ~3!

where Sr is the probability of exactlyr constraints being
violated simultaneously. The number of solutions can n
be found as

Nsol5Ntot„12P~ø iAi !…, ~4!

whereNtot is the number of possible assignments of the va
ables,Ntot5KN for K-COL and Ntot52N for K-SAT. For
K-COL, S15MK21, since there areM edges and each o
a-
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them eliminatesKN21 ~of theKN) solutions. ForS2, we need
to express the number of states that are eliminated by eac
two edges. This is given by

S M

2 DK22,

while the expression for

S35S M

3 DK231~K222K23!t ~5!

requires knowledge of the number of trianglest in the graph.
Expression~5! can be understood by noting that if two edg
in a triangle are frustrated, the third is always frustrated t
It can be shown thatt is Poisson distributed with meang3/6.
To calculateSi for i>4, we also need to know the distribu
tion of more complex subgraphs.

The critical value of the parameter can be approxima
as thatg which givesNsol51 in ~1!, giving

gc522
ln K

lnS 12
1

K D . ~6!

For K53, Eq.~6! givesgc55.4 for K-COL andac55.2 for
K-SAT. These values are larger than the experimental va
of gc54.6 andac54.17. For K-SAT, this approximation
has been independently introduced several times~@39#, and
references therein!.

This calculation of the critical value ofg ignores all cor-
relations between different constraints in the problem.
gives an upper bound forgc and is analogous to studying
forest, a graph without cycles, in which all edges are violat
with a probability p. Taking correlations into account re
duces the number of solutions@6#.

Kirousiset al. @39# have introduced a new method of ge
ting an upper bound for the critical parameter of K-SAT. F
K53, they proveac<4.598, and it is, in principle, possibl
to get better bounds by including more terms in their exp
sion. A lower bound has also been found@40#, ac.3.003. It
is however difficult to generalize these methods to ot
problems, such as K-COL.

VI. RELAXATION BEHAVIOR

We have studied the relaxation of the energye, defined as
the number of unsatisfied constraints per spin, of K-SAT a
K-COL using T50 Monte Carlo~MC! simulations and the
Metropolis single-flip algorithm@2#. A simple case where the
relaxation can be understood is the ferromagnetic Is
model on a regular lattice. For this model, the energy
creases ase;t21/3 if the order parameter is conserved by t
dynamics, whilee;t21/2 if single spin flips that allow the
total magnetization to change are used. These forms of
laxation behavior can be explained by noting that spins w
the same orientation will cluster and form domains~e.g.,
@18#! with a well-defined energy. This explanation does n
immediately carry over to our problems, since there is
known simple expression for the energy as a function o
length scale.
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For the NPC problems studied here, the energy can no
expected always to reach zero, since there are no pe
solutions to problems with many constraints. TheT50 MC
algorithm can also get stuck in local minima. A small gra
where this can happen for 3-COL is shown in Fig. 1.

In each time step in our simulationsN spin flips are at-
tempted. Each flip consists of selecting a random spin
randomly changing its color. The flip is allowed if this leav
the energy unchanged or lowers it, otherwise the spin is
unchanged. In temperatureT.0 simulations, a flip that
raises the energyD units is allowed with probability
exp@2D/T#.

For K-COL, we generated the problems by randomly
lecting M distinct edges from the

S N

2 D
possible withN vertices. ~In graph terminology@41#, this
corresponds to using theG(N,M ) model for random graphs.!
For K-SAT, each clause was generated by selectingK vari-
ables, where each variable was negated with probability1

2 .
The formula was then generated by performing this proc
M times. Clauses with repeated variables were allowed in
expressions, and also repetition of clauses.

In all random systems, the question of whether or not
measured quantities areself-averagingis important. Self-
averaging means that the properties of the entire~infinite!
system can be understood in terms of the properties o
local subsystems. For random systems with local inter
tions, there is a simple argument for this~see e.g.,@42#!, but
if the interactions are global, the situation is more compl
However, for spin glasses such as the Sherringt
Kirkpatrick model, the energy and other simple quantities
self-averaging, and we assume that the energy is s
averaging also in K-SAT and K-COL. This assumption
self-averaging is supported by our simulations; averag
over a small number of large graphs appears to give the s
results as averaging over many small graphs. Schreiber
Martin @43# have recently studied various local search me
ods for the graph partitioning problem and found strong
merical evidence for self-averaging even for sparse gra
They also provide some arguments for why self-averag
should hold, and conjecture that their result holds for
constraint satisfaction problems.

Our simulations show a transition between qualitativ
different forms of relaxation behavior for K-SAT an
K-COL. For small values ofg or a, we find exponential
relaxation to zero energy. For larger values of the parame

FIG. 1. This graph is three colorable, but the Monte Carlo al
rithm can get stuck in the local minimum shown~letters denote
colors!.
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the relaxation becomes algebraic. For large enoughg or a,
the energy freezes at a nonzero value.

The change between exponential and power law re
ation occurs for smaller values ofg anda than the transition
in solvability. More extensive numerical investigations w
be necessary to determine the exact nature of this transi
in particular, whether it is a sharp transition, or whether th
are intermediate regions with different forms of relaxati
behavior. In Sec. VII below, we study the freezing transitio
where the final energy of the MC algorithm changes fro
zero to a nonzero value. When this quantity is measure
sharp transition is observed. This transition does not ne
sarily coincide with the change in functional form of th
decay.

Figure 2 shows the relaxation behavior for 3-COL in
log-log diagram, while Fig. 3 shows that the behavior f
3-SAT is similar. The data in these figures was determin
for systems of size 107 ~for 3-COL! and 106 ~for 3-SAT!.
The relaxation showed similar behavior for other values oK
as well.

The change between exponential and power law deca
illustrated in more detail for 3-COL in Fig. 4, where we ha
plotted e(t)2e(500) for systems ofN5106 spins. The fig-
ure shows data forg50.5 up to 3.0 in increments of 0.1. Fo
small g, the decay is exponential~see also Fig. 5 below for
g51). Wheng is increased, a change from exponential
power law behavior is observed. A reasonable fit to pow
law behavior is found approximately forg>2.

Figure 5 shows the data forg51, where a reasonable fi
to exponential relaxation is obtained, and forg51.5, where a
crossover behavior is seen~these and the following data wer
obtained for systems of sizeN5107) Figure 6 shows the
data forg52, 3, and 4, where a power lawe;e01t2m is
found. Figure 7 shows that the power law also applies
g55 and 8; here the exponent is given bym'0.85.

The exponents for 3-COL are summarized in Table I; n
that due to finite-size effects only data up tot5200 was used
to determine the exponent forg52.

The values for which the energy freezes for differentg in
3-COL are shown in Fig. 8. For largeg, an approximately
linear increase is observed.

For 3-SAT, a52 gives exponentially fast decay, whil
there appears to be a crossover behavior fora53. For a
54 and 6, power law relaxation is obtained,e;e01t2m

with m'0.6 in both cases, see Fig. 9. As in 3-COL,e0 was
found to increase approximately linearly witha.

No significant change in the behavior was seen in fin
temperature simulations. Raising the temperature make
possible to escape from one local minimum, but the sys
is then trapped in another before the ground state is reac
Raising the temperature further repeats this scenario but
increases the fluctuations in the energy. For high eno
temperatures, the fluctuations take over completely and
system is not trapped in any local minimum.

We found the same form of power law relaxation wi
approximately identical exponents for temperatures up tT
50.4, but the frozen-in value of the energy,e0, depended on
the temperature, see Fig. 10. Forg54, theT50.2 runs were
able to achieve an almost 30% better state than theT50
runs.

-
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FIG. 2. The energy per spin a
a function of time averaged ove
two graphs of size 107 for 3-COL.
From bottom left to top right,g
51,2,3,4,5,6,7,8.
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Using simulated annealing to find the ground states
some NP complete spin glasses (3D6J and infinite range
models!, Grestet al. @44# found a logarithmic decay of the
energy,e;e011/ln t. Similar decay was also recently foun
by Kühn et al. @45#, who used an algorithm where attemp
were made to flip several spins at once. The number o
multaneous flips, which plays the same role as the temp
ture in simulated annealing, was then slowly decreas
f

i-
a-
d.

These methods will always find the ground state, whereas
T50 MC algorithm studied here can get stuck in loc
minima. The faster relaxation of theT50 MC method thus
comes at the price of having no guarantee of finding
ground state.

The exact values of the critical parameter for K-COL va
ies depending on the ensemble of graphs used@6#. We tried
different ensembles and found no significant differences
s

0

FIG. 3. The energy per spin a
a function of time for 3-SAT with
106 variables, averaged over 1
different formulas. From bottom
left to top right,a52,3,4,6.
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FIG. 4. The energy per spin a
a function of time, with the energy
at 500 MC steps subtracted, fo
3-COL with g50.5,0.6, . . . 3.0.
The figure illustrates the transition
from fast to power law relaxation
s
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13,
the relaxation behavior~e.g., fn-model Feynman diagram
show approximately the same behavior as random gra
with connectivityg5n).

Since the MC algorithm can get stuck in local minim
one should verify that the behavior does not depend on
initial values of the spins. It is also important to check
what extent the result depends on the choice of rand
graph. To test this, we have performed simulations wher
addition to averaging over several different graphs we a
restarted the MC algorithm with different inital spin config
hs

,
e

m
in
o

rations. In particular, 3-COL withg52 and 4 was studied in
detail.

In Fig. 11 we compare the results forN5107 shown
above to runs for a smaller system (N5104), where an av-
erage over 1000 initial states was performed for each o
larger set of graphs. The figure shows the average en
from these runs ande(t) from the runs withN5107 for g
52 and 4. A reasonable agreement is found in both cas

The variation of the result depending on the choice
graph and initial state is further illustrated in Figs. 12 and
l

FIG. 5. Connectivity g51
~lower curve! in 3-COL gives a
reasonable fit to an exponentia
exp(2t/2) for 5<t<22. Data for
g51.5 ~upper curve! is also
shown.
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FIG. 6. For 3-COL, subtract-
ing a constant from the energ
gives power law relaxation forg
52 ~bottom curve!, 3 ~middle
curve! and 4~top curve!. Note the
finite-size effects in the bottom
curve.
a
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which show the average energy and the standard error

s5
A^e2&2^e&2

ANgNr

~where^•& denotes the average over graphs and restarts,
Ng andNr stand for the number of different graphs and t
number of runs, respectively! for N5104 andg52, for each
of 56 different runs withNr51 and Ng51000. Figure 14
shows the energy and standard error forN5104 and g54
nd

for 54 different runs withNr51 andNg51000, while Fig.
15 shows the standard errors from each of these runs.

For g54, the variation among runs on a single graph~see
Fig. 15! is very small compared to the variation among ra
domly generated graphs shown in Fig. 14; forg52 these are
of comparable magnitude.

We also found similar relaxation behavior when w
started with all spins having the same value, and did not fi
any differences using different random number generat
The generators used include the Mitchell-Moore addit
generator~e.g., @46#!, a 48-bit multiplicative congruentia
y

s

FIG. 7. For 3-COL, subtract-
ing a constant from the energ
gives power law relaxation with
approximately identical exponent
m'0.85 for g55, 6, 7 and 8.
Data is plotted forg55 ~lower
curve! andg58 ~upper curve!.
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3990 PRE 59PONTUS SVENSON AND MATS G. NORDAHL
generator with multiplicative and additive constan
25214903917 and 11, respectively, and the standard C
brary rand() function.

VII. COMPARISON TO OTHER LOCAL SEARCH
METHODS

The Monte Carlo method is an example of alocal search
method. Local search methods start with a candidate solu
and try to improve it by changing it locally~e.g., by flipping
a spin!. Various other such methods have been used to s
the phase transition in search cost in NPC problems. G
and Walsh@47# studied small problems using the GSA
method, a hill-climbing procedure for solving K-SAT prob
lems, and found exponential relaxation over very small ti
ranges. The GSAT method is similar to MC simulations, b
differs in the way a spin is chosen to flip. Instead of flippi
a random spin, GSAT selects that spin whose flipping w
decrease the energy the most. Clarket al. @48# used only
solvable problems~determined by first using a comple
backtracking method! and found an easy-hard-easy transiti
in search cost for two local search methods. The hard
problems occurred approximately at the true transition.

In our case, the behavior is quite different. This is partic
larly evident in Fig. 16, which shows the relaxation f
3-COL with 105 spins using only colorable graphs. It show
the same behavior as in Fig. 2 for both colorable and un

TABLE I. Approximate exponents for 3-COL. The relaxatio
behavior can be described bye;e01t2m, with different constants
e0 for different g ’s. The exponents were determined using tw
graphs of size 107.

g 2 3 4 5 6 7 8

m 2.7 1.3 1.0 0.85 0.85 0.85 0.85
li-

on

dy
nt

e
t

ll

st

-

l-

orable problems. An exceptional case is 2-COL, where
found different behavior when only colorable graphs we
used, see Fig. 17. The reason for this is that forK52 and
colorable graphs there is no difference between the fe
magnetic and antiferromagnetic models. Results and a
ments for the relaxation behavior of ferromagnetic Po
models on random graphs will be presented elsewhere@50#.

Problems with large connectivities are thus always hard
solve using the Monte Carlo method. This is a short-com
of the MC algorithm — even if the problem is solvable, th
MC algorithm can get stuck in local minima that the othe
smarter local search methods manage to avoid.

In order to quantify the difference between the MC alg
rithm and other local search methods, and to compare
freezing transition with the solvability transition, we dete
mined the fractionh(t) of problems for which the MC
method did not find ane50 ground state in less thant MC
steps per spin. We found thath displayed a behavior simila
to the fraction of solvable problems — there appears to b
phase transition, but for a smaller value ofg.

In Fig. 18, we ploth(105) for 3-COL against the rescale
parameter

S g

gc
21DN1/n ~7!

with gc52.4 andn53.75 andN ranging from 20 to 1000. It
is clear that there is a freezing transition well below t
occurrence of the solvability transition. However, it is ne
essary to be cautious when drawing conclusions from sm
systems. The largest systems we have simulated are of
107 for 3-COL and 106 for 3-SAT; these systems were use
to fit the relaxation behavior shown in Table I above. T
determine the freezing transition, we used considera
smaller systems.
FIG. 8. The value at which the
energy freezes as a function ofg
for 3-COL with 107 variables.
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FIG. 9. For 3-SAT, power law
relaxation is obtained fora54
~bottom curve! and 6 ~upper
curve!. The same data is shown a
in Fig. 3, but with ana-dependent
constant subtracted from the en
ergy.
1

or
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n
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hs
ap-
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ph.
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h

n

The approximate values where the transition in Fig.
was found are shown in Table II for 2<K<5, together with
the experimental values for the solvability transition f
K-SAT from @7#, and values for the solvability transition fo
K-COL. The latter were obtained by ourselves using a n
optimized backtrack-search program with the Brelaz heu
tic @49#. For K53, our value coincides with the literatur
@6#; we are not aware of any values forK54 and 5 in the
literature. ForK>4, the values for the solvability transitio
are probably not very accurate — the results vary stron
8

-
-

ly

with the number of variables and the number of grap
tested. It is clear, however, that the relaxation transition h
pens for smaller values than the solvability transition.

Most of our data for the freezing transition was dete
mined by averaging over between 100~for N51000) and
1000 different graphs with a single MC run on each gra
We have also made some runs where we restarted the
algorithm using different initial spin configurations for eac
graph. For smallN, h(t) varied about 13% depending o
whether we used 1, 10, or 100 restarts, but forN>80 there
n

FIG. 10. The energy after 103

MC updates per spin as a functio
of temperature forg52 to 7.
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FIG. 11. For 3-COL the mean
energies of several runs with
(Ng ,Nr)5(1,1000) are compared
to the results forN5107 from
above forg52 ~lower curves, 56
different runs! and g54 ~upper
curves, 54 different runs!.
s
fe

o

tio
th
e

ile

her
ned
ther
was essentially no difference between the different runs,
Fig. 19. In each of these runs we averaged over 1000 dif
ent graphs.

The precise location of the freezing transition depends
the algorithm used to determineh(t). For example, finite
temperature MC methods give a higher value for the loca
of the transition. This illustrates the difference between
freezing transition and the solvability transition. The form
ee
r-

n

n
e
r

is a property of the method used to solve a problem, wh
the latter is a characteristic of the problem itself.

VIII. OTHER RESULTS

We have also found interesting scaling relations for ot
quantities. For graph coloring, the energy as we have defi
it above measures the fraction of frustrated edges. Ano
-
FIG. 12. The energy as a func
tion of time for 56 runs with
(Ng ,Nr)5(1,1000), for 3-COL
with g52.
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FIG. 13. The standard error a
a function of time for 56 runs with
(Ng ,Nr)5(1,1000), for 3-COL
with g52.
d

th

-
tiv

i

er-

of
po-

has
ime
possibility is to measure the fraction of frustrated spins,es .
This quantity shows the same relaxation behavior, if use
the Metropolis algorithm instead ofe.

It is also interesting to study the ratiog frust52e/es ,
which is the connectivity of the sub-graph spanned by
frustrated edges. Figure 20 suggests a transition fromg frust
51 for easy problems tog frust.1 for harder. If the connec
tivity is 1, all frustrated edges are isolated, while connec
ity 2 would mean that all frustrated spins were connected
chains.
in

e

-
n

The Monte Carlo dynamics itself has interesting prop
ties. Figure 21 shows the fractionr (t) of persistent spins,
i.e., those that have not yet been flipped, as a function
time for 3-SAT. The data suggest a transition from an ex
nentially fast to a logarithmically slow decay asa is in-
creased~this will be explored further elsewhere!. For the
Ising and Potts models on a square lattice, this quantity
been found to scale with a power law dependence on t
@51,52#.
-
FIG. 14. The energy as a func
tion of time for 54 runs with
(Ng ,Nr)5(1,1000), for 3-COL
with g54.
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FIG. 15. The standard error a
a function of time for 54 runs with
(Ng ,Nr)5(1,1000), for 3-COL
with g54.
al
e

pi
o
om

the
o

e

IX. HEURISTIC ARGUMENTS FOR POWER LAW
RELAXATION

In K-COL and K-SAT there are global barriers to loc
improvement. In order to lower the frustration for a spin, w
have to make changes to many other, unfrustrated s
~compare Fig. 1!. One way of explaining the relaxation is t
look at these barriers and see how long it takes to overc
then.

In the following, we call a proposed assignment of theN
ns

e

variables a state in the space of all solutions. Consider
probability p( i ) that a state hasi unsatisfied constraints, s
that e5 i /N. In analogy with expression~1! for K-COL, this
can be approximated by

psol~ i !5~12pv!M2 i pv
i S M

i D , ~8!

wherepv is the probability that a constraint is violated. Th
binomial factor
.

FIG. 16. The relaxation in
3-COL with only colorable graphs
allowed. No significant change
compared to Fig. 2 is observed
From bottom to top,g51, 2, 3, 4,
5, 6, 7, and 8.
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FIG. 17. The relaxation in
2-COL with only colorable graphs
allowed. The behavior is similar
to that found for ferromagnetic
random graphs.g51 starts with
the lowest energy, followed byg
52,3,4,5,6,7,8. The small arrow
indicates theg58 data.
r-
e
co

w
or

we
y

S M

i D
represents the number of different ways to choose thei un-
satisfied edges. Recall that for K-COLpv51/K and for
K-SAT pv51/2K. In the approximation, we neglect all co
relations between the constraints, such as the presenc
triangles and other regular structures in the graph to be
ored. In the following, only K-COl will be considered.
of
l-

The Monte Carlo algorithm works by generating a ne
state, and changing to this state if its energy is lower than
equal to that of the current state. In the approximation
assume that the probability that the new state has energe8
is proportional topsol(e8). Given a state with energye, all
transitions to states with energye8.e are forbidden. The
probability of staying in a state with energye is then propor-
tional to ( i 5e

M psol( i ), while the probability for a transition to
an energye9,e is proportional topsol(e9).
-
n

s
-

FIG. 18. Finite-size scaling
analysis of the fraction of prob-
lems for 3-COL where a zero en
ergy ground state has not bee
found before 105 MC updates per
spin. The system sizeN ranges
from 20 to 1000, and the data i
plotted against the rescaled pa
rameter (g/gc21)N1/n, with gc

52.4 andn53.75. A good fit is
obtained, except forN520 and
30.
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This process can be viewed as a Markov chain. The tr
sition matrix between states of different energy has elem
pi j given by the probability that statei is followed by statej :

pi j 55
0, i , j ,

(
n5 i

M

psol~n!512 (
n50

i 21

psol~n!, i 5 j ,

psol~ j !, i . j

~9!

for i , j 50,...,M . The transition probabilitypii can be writ-
ten in terms of the hypergeometric function2F1(a,b,c;z)
@53# as

pii 5psol~ i !2F1S 1,i 2M ,i 11;
pv

pv21D .

TABLE II. The approximate values ofg anda where the freez-
ing transition was found, determined using a simple finite-size s
ing. Also shown are experimental valuesgc

exp and ac
exp for the

solvability transition determined by Kirkpatrick and Selman and
us.

K5 2 3 4 5

K-COL 0.2 2.4 6.7 11
gc

exp 4.6 8.7 13.1
K-SAT 1 4 8.4 16.7
ac

exp 1.0 4.17 9.75 20.9
n-
ts

This approximation ignores the detailed mechanisms of
MC algorithm ~which can only change a state locally!, in-
stead we consider transitions between classes of states
the same energy.

Using this transition matrix to evolve the states in tim
numerically, power law relaxation behavior is found, see F
22. The exponent differs from that in our MC simulation
One reason for this is that the MC simulations only allo
single-spin flips, while Eq.~9! allows jumps between arbi
trary spin configurations — the global and the local ene
landscapes are different. We have performed simulations
ing a MC algorithm that changes the entire spin configu
tion instead of just a single spin. The results indicate
slower power law relaxation, with an exponent that is co
sistent with Fig. 22. In contrast to the regular MC simu
tions, the exponent here showed a weak dependence on
tem size. The dependence was the same for both
simulations and time evolution using Eq.~9!.

In the MC algorithm,N attempts to flip a spin are made i
each time step. Inspired by statistics of the energy landsc
we have made simulations where we require that there aN
acceptedspin flips in each time step~in T50 simulations,
this means that time is not increased for flip attempts
higher energy.! Time was increased by 1/N for each change
in the spin configuration. The power law relaxation behav
did not change when this modified algorithm was used.

For these simulations, we can ignore all transitions
states with higher energy. Since a single spin flip is unlik
to decrease the energy by more than one~see Fig. 20!, we
can also ignore transitions to states with energyj , i 21, and
consider a two-state system.

To estimate the time needed to go from statei to j 5 i
21, we assume thatp( i )/p( i 21) can be approximated by

psol~ i !/psol~ i 21!5
pv

12pv

M2 i 11

i
;

1

e
. ~10!

l-
n

t
r

FIG. 19. The fractionh of
problems for 3-COL where a zero
energy ground state has not bee
found after 104 MC updates per
spin, averaged over 1000 differen
graphs of size 100, with 1, 10, o
100 restarts per graph.
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FIG. 20. The connectivity of
the graph spanned by the frus
trated edges as a function of time
Note the change fromg frust51 to
.1 as the problem difficulty in-
creases. The data are for 3-CO
with N5105, averaged over 10
graphs. From bottom to top,g
52,3,4,5,6,7.
ty

er
e

is
Since the average time needed to pass from statei to state
j 5 i 21 is given by the inverse of the transition probabili
per unit time, we then have

Dt5
p~ i !1p~ i 21!

p~ i 21!
511

psol~ i !

psol~ i 21!
;11

1

e
~11!

for the time needed to go from statei to i 21.
Another viewpoint is to consider the free energy barri

D f in the problem. Since transitions to states with high

s
r

energy are not allowed by theT50 Monte Carlo dynamics,
we can neglect the energy part ofD f . The entropic part will,
however, be positive,

D f 52kbT ln N~ j !1kbT ln N~ i !5kbT ln
psol~ i !

psol~ j !
~12!

for a transition fromi to j . The time needed to overcome th
free energy barrier is
a
.
s

FIG. 21. For 3-SAT, the frac-
tion of persistent spins shows
similar transition as the energy
The data are averages of 10 run
on systems of 106 spins and show
a52 ~bottom!, 3, 4, and 6~top!.
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t;expS D f

kbTD;
psol~ i !

psol~ j !
;

1

e
, ~13!

if i 5 j 11 ande5 i /N.
By inverting Eqs.~11! and ~13!, power law relaxation

with an asymptotict21 dependence can be obtained. This
justified for largeg, where all free energy barriers hav
roughly the same size, but not forg below the freezing tran-
sition. Similar difficulties also arise, e.g., for coarsenin
where arguments for relaxation usually are given for nuc
ation, where a single domain grows or shrinks. It is th
justifiable to invert the equation relating the energy of t
domain and the time needed to shrink it. In the coalesce
regime, however, several such domains form and grow s
rately before they coalesce. The inversion is then not
lowed, even though the same relaxation behavior is foun
simulations.

The power law with t21 dependence approximate
matches the behavior of K-COL for critically constrainedg ’s
~see Table I!. For overconstrained problems, the relaxation
slower thant21. This could depend on the local energy lan
scape being different from the global when the problems
overconstrained. The arguments above should be vie
only as a simplistic first approximation, and cannot be
pected to reproduce all important features of the numer
results.

The barriers in Eq.~12!, which are proportional to the
logarithm of the energy, do not appear in any of the coa
ening classes introduced by Lai, Mazenko, and Valls@54#.
The difference seems to be that here there are entropy b
ers. That the entropy is high for low energies is explained
the fact that the interactions are antiferromagnetic and
variables are Potts spins. If each spin can haveK different
values and the interactions are ferromagnetic, each sati
bond can be satisfied inK different ways, while there are
K22K choices for the unsatisfied ones. If the interactions
antiferromagnetic, each satisfied bond hasK22K possibili-
ties and the unsatisfiedK. Since there are more satisfie
bonds than unsatisfied, an antiferromagnetic problem is
restricted, at least forK.2. As always, this reasoning ig
nores all correlations between constraints in the probl
such as triangles in graphs.

FIG. 22. Log-log plot of the behavior of the Markov chain d
fined by Eq.~9!.
,
-

n

ce
a-
l-
in

s
-
re
ed
-
al

-

rri-
y
e

ed

e

ss

,

X. CONCLUSIONS AND DISCUSSION

We have shown that there are additional transitions in
behavior of two NPC problems — graph colorability an
satisfiability. There is a freezing transition, and the relaxat
changes from exponential to power law as the difficulty
the problem increases. These transitions occur for sma
values of the parametersg and a than the transitions in
solvability and search cost.

We also studied the effects of using only colorab
graphs, and measured other quantities, such as the fractio
persistent spins for K-SAT, which also showed a transitio

A simple heuristic argument for the form of the relaxatio
behavior depending on entropy barriers was also given.
free energy barriers in these problems have a less
nounced energy dependence than in other models. One
compare them to systems where logarithmic relaxation
been found forTÞ0 andT50 MC simulations, such as in
@55#, where a tiling model containing no randomness at
was studied. The main difference between these systems
ours seems to be that they have local interactions and f
tration, whereas we have infinite-range interactions and fr
tration.

The problems with logarithmic relaxation are in som
ways simpler than the NPC problems studied here. Th
ground states can always be found in polynomial time, a
they do not contain any difficult optimization problem. O
the other hand, K-SAT and K-COL have ground states t
may require exponential time to find. Our results show tha
can be easier to find approximate solutions to these h
problems than for the easy problems giving logarithmic
laxation. Of course, to actually find the ground state with
MC algorithm is very difficult for K-COL and K-SAT. What
the NPC problems gain in finding an approximate solution
lost when it comes to finding the ideal, ground state soluti

Other problems where entropy barriers and logarithm
relaxation are found include the backgammon model int
duced by Ritort @56# and the random-field Ising mode
@57,58#. The backgammon model contains no energy barr
at all, only entropy barriers, and can be solved@59# by con-
sidering random-walk models with entropy barriers. In o
models, the entropy barriers scale as the logarithm of
energy. This means that the time needed to overcome
free energy barrier loses its exponential dependence and
comes algebraic, leading to power law relaxation. We h
also found this behavior in more general constraint satis
tion problems than K-COL and K-SAT@50#. Relaxation be-
havior similar to that in our models has also been obtain
by Campelloneet al. for a short-rangep-spin glass model
@60#. These models should be studied further.

We see several possibilities for future work in this fiel
More detailed studies of the behavior of the fraction of p
sistent spins as well as of damage spreading and hystere
strongly disordered systems are needed. Since hard op
zation problems are also spin glasses, a search for spin g
characteristics such as aging and chaotic responses to s
perturbations in the hamiltonian may also be interesting.
are preparing a study of the energy landscapes of these
related models. Investigating the connection between the
pology of the random graph and that of the energy landsc
may also provide more insight into why NPC problems a
difficult.
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