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Relaxation in graph coloring and satisfiability problems
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Using T=0 Monte Carlo simulation, we study the relaxation of graph colofikgCOL) and satisfiability
(K-SAT), two hard problems that have recently been shown to possess a phase transition in solvability as a
parameter is varied. A change from exponentially fast to power law relaxation, and a transition to freezing
behavior are found. These changes take place for smaller values of the parameter than the solvability transition.
Results for the coloring problem for colorable and clustered graphs and for the fraction of persistent spins for
satisfiability are also present$1063-651X99)09904-3

PACS numbes): 75.10.Hk, 75.10.Nr, 02.10.Eb, 89.8¢th

I. INTRODUCTION tant difference is that these models can suffer from frustra-
tion.

Computers have made it possible for physicists to do ex- This article is organized in the following way: Sectiqn Il
periments without leaving their offices. By simulating sys-introduces some concepts from computer science, while the
tems from nature, or simple models from theoretical physicsproblems we study are described in Sec. lll. Previous work
a tremendous amount of information can be gained. The ad?n the solvability transition is reviewed in Sec. IV and some

sible to simulate systems consisting of vast numbers of in®4r results on the relaxation behavior, Sec. VII compares the

teracting particles. Physics, in turn, has inspired neV\yesults to other local search methods. Additional measure-

algorithms for solving problems in computer science. Fornents, e.g., Of. the fra_ctlon of perS|s_tent spins, are found in
instance, the method of simulated annealiag based on Sec. VIII. Section IX discusses possible explanations for the

Monte Carlo simulations with the Metropolis algoritHr2], relaxation behavior and comments on the importance of en-
) : . : tropy barriers. Conclusions and a discussion are contained in
can sometimes find good solutions much quicker than tradl—SeC X
tional algorithmg 3]. o
Physicists have also started to study systems that are not
found in nature, but instead come from computer science Il. COMPUTER SCIENCE FOR PHYSICISTS
[4,5]. As an example, phase transitions in optimization prob-

lems have been discovered and studied using statistical mg;
chanics[6,7]. Other problems studied using physical meth-p,qqt important resource is time, but it is also possible to
ods include the knapsack problgs, graph partitionind9],  gistinguish between problems that require qualitatively dif-
minimax gameg 10], the 8-Queens problerfi1], number  ferent amounts of memory. For example, a lishbélements
partitioning[12,13, and the stable marriage probld¥].  can always be sorted in time less thaNIn N, wherek is
Field theory has also been used to study, e.g., the enumergome constarftL9]. The problems whose running time on a
tion of Hamiltonian cycles on grapHd5] and coloring of  universal Turing machinée.g.,[20]) is bounded by a poly-
random, planar graph46,17. nomial in their size are said to be in the class P. The impor-
Here we present a study of tifle=0 relaxation behavior tant class NRfor nondeterministic polynomialconsists of
of hard optimization problems. Using Monte Carlo simula-those problems where it can be checked in polynomial time
tion, we have measured the energy of a system starting in whether a proposed solution actually solves the probl@m.
random(excited state and slowly relaxing into the ground nondeterministicTuring machine would be able to solve NP
state or a low-lying excited state. We find qualitatively dif- problems in polynomial time.lt is obvious that EZNP, but
ferent behavior for hard and easy instances of the problemshere is no proof that #NP. However, most people believe
One of many modelge.g.,[18]) for which relaxation has that there are NP problems whose worst-case instances take
been studied is the ferromagnetic Ising model on a regulagxponential time to solve on a universal Turing machine.
lattice. The models studied here differ from the Ising model The class NP-completeor NPQ are the most important
in several respects. They are random, i.e., there is no pattegroblems in NP. A problem of sizH is in NPC if all other
in the interactions between the spins, and the interactionslP problems can be transformed into it in time at most poly-
have infinite range. K-COL can be viewed as a Potts modehomial inN. A method to solve an NPC problem efficiently
on a random graph with finite connectivity. Another impor- can thus be used to solve any NP problem efficiently. It is
known that if P=NP then there are problems in NP that are
in neither P nor NPC. A problem is called NP-hard if it is at
*Electronic address: ttkps@fy.chalmers.se least as difficult as the most difficult NP problems; NPC is
TElectronic address: tfemn@fy.chalmers.se the intersection of NP and NP-hard.

Computer scientists classify problems according to the
aximal amount of resources needed for their solution. The
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It is worth emphasizing that it is the worst-case complex- Below, we will usea for K-SAT and y when we talk of
ity that determines whether a problem is in NPC. The averK-COL. We will concentrate on K-COL; most results for
age time needed to solve an NPC probl@given a distribu-  K-SAT are similar.
tion of problem$ may still be polynomial in problem size.

The properties of K-COL and K-SAT studied here are re-
lated to average case behavior, and do not address the ques- IV. TRANSITION

tion of whether B=NP. For physicists, an interesting property of these problems

A ni_ce introduction to most elementary concepts fromig that they contain phase transitigis27,24. As the num-
theoretical computer science can be founfdh]. A modern  por of constraints increases, there is a transition from a re-

reference on complexity theory and NP problemd22],  gion where almost all instances of the problem are solvable

while [23] has an extensive list of NPC problems. to a region where practically none can be solved. Physically,
the transition is from a region where the ground state has
IIl. K-SAT AND K-COL zero energy to one where it is finite. Adre=2 the transition

can be seen as a transition betweeP problem(finding a

Two important problems in NPC are graph colorifi  perfect solution to the problenand an NPC problertfind-
COL) and satisfiability testingSAT). Graph coloring is the ing an assignment of variables that minimizes the number of
problem of coloring a graph witiN vertices andM edges unsatisfied constraints
usingK colors so that no two adjacent vertices have the same An approximation similar to mean-field theory has been
color. In physical terms, K-COL is the problem of finding a used by Williams and Hog¢e.g.,[29]) and others to explain
ground state without frustrated bonds in an antiferromagnetisome of the properties of the phase transition. Recently,
K-state Potts model on a random graph. Related models haw&iedgut has also made some progress towards showing rig-
been studied by Baillie, Johnston, and coworkéesg., orously the existence of a sharp transition in solvability for
[24,25), who considered Potts models @f-model Feyn-  both K-SAT[30] and K-COL[31].
man diagrams. They found similarities between models on Related to this phase transition in problem solvability,
¢ and ¢* graphs and Bethe lattices, and showed that mearthere is a transition in how difficult it is to solve a problem or
field theories work well for describing both ferromagnetic show that no solutions exi§27,32,33. If there are few con-
and antiferromagnetic models in Feynman diagrams. straints on the solutiotthe problem isunderconstraineq it

The most natural application of graph coloring is inis easy to find one. Similarly, if there are so many constraints
scheduling problems. For example, a school where eacthat the problem isoverconstrained not much effort is
teacher and student can be involved in several differenheeded to show that it is unsolvable. In between these re-
classes must schedule the classes so that no collisions occgions, where the problems agétically constrained there is
If there areK different time slots available, this is K-COL. a peak in problem difficulty. This is called the “easy-hard-

Satisfiability was the first problem shown to be in NPC easy” transition[32].
[26]. It is the problem of finding an assignment of true or  K-SAT has recently been studied by a number of physi-
false toN variables so that a boolean formula in them iscists. Kirkpatrick and Selma|Y] studied the phase transition
satisfied. In K-SAT, this formula is written igonjunctive  using finite-size scaling methods, and Monasson and
normal form(CNF), that is, it consists of the logical AND of Zecchina[34] used the replica methd®5] to show that the
M clauses, each clause being the ORKdpossibly negated  entropy of K-SAT stays finite at the transition. This means
variables, where the same clause may appear more than ongmit below the transition there are several solutions to each
in a formula. For example x{/y)/\(y\/—2) is an instance problem, all of which develop inconsistencies as the critical
of 2-SAT with two clauses and three variables. Applicationsa is passed. Another problem that has been studied using
of K-SAT include theorem proving, VLSI design, and learn- statistical mechanics is the number partitioning problem.
ing. Mertens has recently shown that it too has a phase transition
In K-SAT, each clause forbids one of thé Dossible [13]. The relevant parameter here is the ratio between the
assignments for its variables. In the same way, an edge in @umber of bits of input data and the number of variables.
graph forbidsK of the K2 different colorings of its vertices. Another problem in NPC that also shows a transifigé]
For both problems, there ah constraintson the solutions. is the traveling salesperson probléfSP, where the objec-
The energye of a problem instance is defined as the numbetive is to find a tour of minimum length visitingl given
of unsatisfied constraints per variable. Both K-SAT anddistinct cities. A difficulty in studying this problem is that
K-COL are in P forK=2 and in NPC forK=3 [23]. The there is no natural parametélike o and vy) that distin-
related problem(MAX-K-SAT) of trying to minimize the guishes between under- and overconstrained problems. To
number of unsatisfied clauses in K-SAT is in NPC even forget one, the TSP must be reformulated as a decision prob-
K=2. lem: is there a Hamiltonian path of length less th&nThe

The most important problems are those where the numbesarametet plays the same’te asa — for a given distribu-
of constraints is of the same order as the number of variablesion of problems there is ah such that ifl>1., almost all
M=aN. The scheduling problem described above fulfillsinstances have a tour with lengthl, but if | <l practically
this condition, for example. For graph coloring,=+y/2,  no such tours exist. Traditionally, most NPC problems are
wherey is theconnectivityof the graph. The connectivipr  formulated as decision rather than optimization problems.
average degreés defined as the mean number of edges ex- There are many NPC problems that contain no obvious
iting each node. For a graph withvertices ance edges, itis  parameter, which makes it difficult to say if the solvability
2e/n. phase transition exists in all NPC problems or in just a few.
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There have been attempts to formulate a more general pgem eliminate&KN ™1 (of theKN) solutions. ForS,, we need
rameter(e.g.,[37]), with the drawback that it requires us to to express the number of states that are eliminated by each of

approximate the number of solutions. two edges. This is given by
Phase transitions have also been found in problems be-
yond NPC, e.g., in QSAT38], a harder version of satisfi- M _s
ability where the boolean variables are quantified by either 2 K™%,
or 3 (in ordinary SAT, all variables are existentially quanti-
fied). This problem is known to be PSPACE complg22],  while the expression for
meaning that it is at least as hard as all problems that can be
solved by a universal Turing machine without time limits but _ 3 o L3
using memory at most polynomial in problem size. S3= 3 K24 (K 2=K™9)t )
V. AN APPROXIMATE THEORY FOR THE TRANSITION requires knowledge of the number of triangtes the graph.

o » Expression(5) can be understood by noting that if two edges

The approximation proposed by Wiliams and Hoggin a triangle are frustrated, the third is always frustrated too.
[6,29] assumes that the constraints in the problem are indgt can be shown thatis Poisson distributed with meay?/6.
pendent. In physical terms it simply means performing anrg calculateS; for i =4, we also need to know the distribu-
annealed rather than a quenched average over the disordertj#y of more complex subgraphs.
is exact for graphs without loops and for satisfiability prob-  The critical value of the parameter can be approximated
lems where no variable is contained in more than one clausgs thaty which givesNg,=1 in (1), giving
The probability that an independent constraint is violated is

p=1/2¢ for K-SAT and p=K/K?=1/K for K-COL. The InK
probability of having none oM constraints violated can be Y= —2—1- (6)
approximated as (4p)", ignoring correlations between In(l—R)

constraints, such as triangles in graphs. The number of solu-
tions for K-COL is then ForK=3, Eq.(6) givesy.=5.4 for K-COL anda.=5.2 for

1\ N2 K-SAT. These values are larger than the experimental values
NsoIZKN(l__) , 1) of y.=4.6 anda,=4.17. For K-SAT, this approximation
K has been independently introduced several tid8], and

o references therejn
and for K-SAT the expression is This calculation of the critical value of ignores all cor-
N relations between different constraints in the problem. It
AN gives an upper bound foy, and is analogous to studying a
Nsor=2 ( 1- ?) ' 2) forest a graph without cycles, in which all edges are violated
with a probability p. Taking correlations into account re-
Using the inclusion-exclusion principle it is possible to duces the number of solutiof§].
write an exact expression foNg, [6]. The inclusion- Kirousiset al.[39] have mtrpduced a new method of get-
exclusion principle is the generalization of the simple for-ting an upper bound for the critical parameter of K-SAT. For
mula K=3, they provex.<4.598, and it is, in principle, possible
to get better bounds by including more terms in their expan-
P(AUB)=P(A)+P(B)—P(ANB) sion. A lower bound has also been foudd], «.>3.003. It
is however difficult to generalize these methods to other

from mathematical statistics. If we lé&t be the event that Problems, such as K-COL.

constrainti is violated, it expresses the probability that any

(i.e., at least oneconstraint is violated in terms of the prob- VI. RELAXATION BEHAVIOR
abilities of one, two, three, or more constraints being vio-

lated simultaneously, We have studied the relaxation of the eneegylefined as

the number of unsatisfied constraints per spin, of K-SAT and
M K-COL usingT=0 Monte Carlo(MC) simulations and the
P(UA) = E (-1)*1s,, 3) Metrop_olis single-flip algorithnﬁz]..A simple case wher_e the_
r=1 relaxation can be understood is the ferromagnetic Ising
model on a regular lattice. For this model, the energy de-
where S, is the probability of exactly constraints being creases as~t~'2if the order parameter is conserved by the
violated simultaneously. The number of solutions can nowdynamics, whilee~t~2 if single spin flips that allow the
be found as total magnetization to change are used. These forms of re-
laxation behavior can be explained by noting that spins with
Nso= Niot(1 = P(U;A)), (4)  the same orientation will cluster and form domaifesg.,
[18]) with a well-defined energy. This explanation does not
whereN, is the number of possible assignments of the variimmediately carry over to our problems, since there is no
ables,N,=KN for K-COL and N,,,=2N for K-SAT. For  known simple expression for the energy as a function of a
K-COL, S;=MK ™1, since there aré/ edges and each of length scale.
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the relaxation becomes algebraic. For large enough «,
the energy freezes at a nonzero value.

The change between exponential and power law relax-
ation occurs for smaller values g¢fand« than the transition
in solvability. More extensive numerical investigations will
be necessary to determine the exact nature of this transition,
in particular, whether it is a sharp transition, or whether there
are intermediate regions with different forms of relaxation
behavior. In Sec. VII below, we study the freezing transition,
where the final energy of the MC algorithm changes from
zero to a nonzero value. When this quantity is measured, a
§narp transition is observed. This transition does not neces-
g&rily coincide with the change in functional form of the
decay.

Figure 2 shows the relaxation behavior for 3-COL in a
log-log diagram, while Fig. 3 shows that the behavior for
tempted. Each flip consists of selecting a random spin and-SAT is S|m|lar._ The7 data in these figures was determined
randomly changing its color. The flip is allowed if this leaves O Systems of size 10(for 3-COL) and 16 (for 3-SAT).
the energy unchanged or lowers it, otherwise the spin is |eff he relaxation showed similar behavior for other valuek of
unchanged. In temperaturé>0 simulations, a flip that @s well.

FIG. 1. This graph is three colorable, but the Monte Carlo algo-
rithm can get stuck in the local minimum showietters denote
colors.

expected always to reach zero, since there are no perfe
solutions to problems with many constraints. The 0 MC
algorithm can also get stuck in local minima. A small graph
where this can happen for 3-COL is shown in Fig. 1.

In each time step in our simulatio¢ spin flips are at-

raises the energyA units is allowed with probability The change between exponential and power law decay is
exd —A/T]. illustrated in more detail for 3-COL in Fig. 4, where we have
For K-COL, we generated the problems by randomly seplotted e(t) — €(500) for systems oN=10° spins. The fig-
lecting M distinct edges from the ure shows data foy=0.5 up to 3.0 in increments of 0.1. For
small y, the decay is exponentigee also Fig. 5 below for
N v=1). When is increased, a change from exponential to
( ) power law behavior is observed. A reasonable fit to power
2 law behavior is found approximately for=2.

Figure 5 shows the data far=1, where a reasonable fit

possible withN vertices. (In graph terminology{41], this o exponential relaxation is obtained, and for 1.5, where a
corresponds to using thgN,M) model for random graphs. ~ Crossover behavior is seéhese and the following data were
For K-SAT, each clause was generated by seledtingri-  obtained for systems of sizi=10") Figure 6 shows the
ables, where each variable was negated with probafility data fory=2, 3, and 4, where a power lage~eq+t # is
The formula was then generated by performing this procesiund. Figure 7 shows that the power law also applies for
M times. Clauses with repeated variables were allowed in thee=5 and 8; here the exponent is given py-0.85.
expressions, and also repetition of clauses. The exponents for 3-COL are summarized in Table I; note
In all random systems, the question of whether or not théhat due to finite-size effects only data uptte200 was used
measured quantities arself-averagingis important. Self- to determine the exponent for=2.
averaging means that the properties of the eniiménite) The values for which the energy freezes for differgnn
system can be understood in terms of the properties of it§-COL are shown in Fig. 8. For large, an approximately
local subsystems. For random systems with local interaclinear increase is observed.
tions, there is a simple argument for tiisee e.g.[42]), but For 3-SAT, a=2 gives exponentially fast decay, while
if the interactions are global, the situation is more complexthere appears to be a crossover behaviorder3. For «
However, for spin glasses such as the Sherrington=4 and 6, power law relaxation is obtaineek- e+t~ #
Kirkpatrick model, the energy and other simple quantities arevith x~0.6 in both cases, see Fig. 9. As in 3-CQd,was
self-averaging, and we assume that the energy is selfound to increase approximately linearly with
averaging also in K-SAT and K-COL. This assumption of No significant change in the behavior was seen in finite-
self-averaging is supported by our simulations; averagingemperature simulations. Raising the temperature makes it
over a small number of large graphs appears to give the sanp@ssible to escape from one local minimum, but the system
results as averaging over many small graphs. Schreiber arigl then trapped in another before the ground state is reached.
Martin [43] have recently studied various local search meth-Raising the temperature further repeats this scenario but also
ods for the graph partitioning problem and found strong nudincreases the fluctuations in the energy. For high enough
merical evidence for self-averaging even for sparse graphséemperatures, the fluctuations take over completely and the
They also provide some arguments for why self-averagingystem is not trapped in any local minimum.
should hold, and conjecture that their result holds for all We found the same form of power law relaxation with
constraint satisfaction problems. approximately identical exponents for temperatures up to
Our simulations show a transition between qualitatively=0.4, but the frozen-in value of the energy, depended on
different forms of relaxation behavior for K-SAT and the temperature, see Fig. 10. Fpr4, theT=0.2 runs were
K-COL. For small values ofy or a, we find exponential able to achieve an almost 30% better state thanTth®
relaxation to zero energy. For larger values of the parameteruns.
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Using simulated annealing to find the ground states offhese methods will always find the ground state, whereas the
some NP complete spin glassed)(3J and infinite range T=0 MC algorithm studied here can get stuck in local
models, Grestet al. [44] found a logarithmic decay of the minima. The faster relaxation of tie=0 MC method thus
energy,e~ o+ 1/Int. Similar decay was also recently found comes at the price of having no guarantee of finding the
by Kuhn et al. [45], who used an algorithm where attempts ground state.
were made to flip several spins at once. The number of si- The exact values of the critical parameter for K-COL var-
multaneous flips, which plays the same role as the temperades depending on the ensemble of graphs Ugg¢dwe tried
ture in simulated annealing, was then slowly decreasedlifferent ensembles and found no significant differences in
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The figure illustrates the transition
from fast to power law relaxation.
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the relaxation behaviote.g., #"-model Feynman diagrams rations. In particular, 3-COL withy=2 and 4 was studied in
show approximately the same behavior as random graphdetail.
with connectivity y=n). In Fig. 11 we compare the results foé=10" shown
Since the MC algorithm can get stuck in local minima, above to runs for a smaller systemN £ 10%), where an av-
one should verify that the behavior does not depend on therage over 1000 initial states was performed for each of a
initial values of the spins. It is also important to check tolarger set of graphs. The figure shows the average energy
what extent the result depends on the choice of randorfrom these runs and(t) from the runs withN= 10’ for y
graph. To test this, we have performed simulations where in=2 and 4. A reasonable agreement is found in both cases.
addition to averaging over several different graphs we also The variation of the result depending on the choice of
restarted the MC algorithm with different inital spin configu- graph and initial state is further illustrated in Figs. 12 and 13,
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which show the average energy and the standard error  for 54 different runs withN, =1 andNy,=1000, while Fig.
15 shows the standard errors from each of these runs.

V(€?)—(€)? For y=4, the variation among runs on a single grépke
o=—— Fig. 15 is very small compared to the variation among ran-
VNgN; domly generated graphs shown in Fig. 14; 4o 2 these are

of comparable magnitude.
(where(-) denotes the average over graphs and restarts, and We also found similar relaxation behavior when we
Ng andN, stand for the number of different graphs and thestarted with all spins having the same value, and did not find
number of runs, respectivéljor N=10* andy=2, for each  any differences using different random number generators.
of 56 different runs withN,=1 and Ny=1000. Figure 14 The generators used include the Mitchell-Moore additive
shows the energy and standard error for 10 and y=4  generator(e.qg., [46]), a 48-bit multiplicative congruential

0
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FIG. 7. For 3-COL, subtract-
ing a constant from the energy
eft)—e, gives power law relaxation with
approximately identical exponents
un~0.85 for y=5, 6, 7 and 8.
Data is plotted fory=5 (lower
107 curve and y=8 (upper curve
10-3 . R RPN R . NP | . NP
10° 10' 10° 10°

t (MC steps per spin)
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TABLE I. Approximate exponents for 3-COL. The relaxation orable problems. An exceptional case is 2-COL, where we
behavior can be described ley- € +t™#, with different constants  found different behavior when only colorable graphs were
€ for different y’s. The exponents were determined using two ysed, see Fig. 17. The reason for this is thatKer2 and
graphs of size 10 colorable graphs there is no difference between the ferro-
magnetic and antiferromagnetic models. Results and argu-
Yy 2 3 4 > 6 7 8 ments for the relaxation behavior of ferromagnetic Potts
4 27 13 10 o085 08 085 085 Modelsonrandom graphs will be presented elsewf&0p

Problems with large connectivities are thus always hard to
solve using the Monte Carlo method. This is a short-coming
generator with multiplicative and additive constants©f the MC algorithm — even if the problem is solvable, the
25214903917 and 11, respectively, and the standard C IMC algorithm can get stuck in local minima that the other,
braryrand() function. smarter local search methods manage to avoid.

In order to quantify the difference between the MC algo-
rithm and other local search methods, and to compare the
freezing transition with the solvability transition, we deter-
mined the fractiony(t) of problems for which the MC

The Monte Carlo method is an example dbaal search  method did not find ar=0 ground state in less tharMC
method. Local search methods start with a candidate solutiosteps per spin. We found thatdisplayed a behavior similar
and try to improve it by changing it localle.g., by flipping  to the fraction of solvable problems — there appears to be a
a spin. Various other such methods have been used to studghase transition, but for a smaller value yf
the phase transition in search cost in NPC problems. Gent In Fig. 18, we ploty(10°) for 3-COL against the rescaled
and Walsh[47] studied small problems using the GSAT parameter
method, a hill-climbing procedure for solving K-SAT prob-
lems, and found exponential relaxation over very small time (

VII. COMPARISON TO OTHER LOCAL SEARCH
METHODS

yl—l) N @)
Cc

ranges. The GSAT method is similar to MC simulations, but
differs in the way a spin is chosen to flip. Instead of flipping
a random spin, GSAT selects that spin whose flipping will
decrease the energy the most. Clatkal. [48] used only  with y.=2.4 andv=3.75 andN ranging from 20 to 1000. It
solvable problemddetermined by first using a complete is clear that there is a freezing transition well below the
backtracking methogdand found an easy-hard-easy transitionoccurrence of the solvability transition. However, it is nec-
in search cost for two local search methods. The hardesissary to be cautious when drawing conclusions from small
problems occurred approximately at the true transition. systems. The largest systems we have simulated are of size

In our case, the behavior is quite different. This is particu-10" for 3-COL and 16 for 3-SAT; these systems were used
larly evident in Fig. 16, which shows the relaxation for to fit the relaxation behavior shown in Table | above. To
3-COL with 1 spins using only colorable graphs. It shows determine the freezing transition, we used considerably
the same behavior as in Fig. 2 for both colorable and uncolsmaller systems.

0.35 T T T T T T

03 1

025 -

e(10%) FIG. 8. The value at which the
energy freezes as a function ¢f
0.15} . for 3-COL with 10 variables.

01 -

0.05F -
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10_ T T L T T LA |

FIG. 9. For 3-SAT, power law
relaxation is obtained fora=4
(bottom curve and 6 (upper
curve. The same data is shown as
in Fig. 3, but with ana-dependent
constant subtracted from the en-

ergy.

s(t)—e0

10

-3 . NN A PN

10 10 10
t (MC steps per spin)

10

10

The approximate values where the transition in Fig. 18with the number of variables and the number of graphs
was found are shown in Table Il forkK =<5, together with  tested. It is clear, however, that the relaxation transition hap-
the experimental values for the solvability transition for pens for smaller values than the solvability transition.
K-SAT from [7], and values for the solvability transition for Most of our data for the freezing transition was deter-
K-COL. The latter were obtained by ourselves using a nonmined by averaging over between 10f@r N=1000) and
optimized backtrack-search program with the Brelaz heuris1000 different graphs with a single MC run on each graph.
tic [49]. For K=3, our value coincides with the literature We have also made some runs where we restarted the MC
[6]; we are not aware of any values fr=4 and 5 in the algorithm using different initial spin configurations for each
literature. ForK =4, the values for the solvability transition graph. For smalN, #(t) varied about 13% depending on
are probably not very accurate — the results vary stronglywhether we used 1, 10, or 100 restarts, butNer 80 there

07 T T T T T T T T T
o 2
+ 3
06k x 4 .
> 5
N 6
v 7 v
05F v .
<
v <
04 -
<
£(10%) v > FIG. 10. The energy after $0
> MC updates per spin as a function
03} v . . of temperature fory=2 to 7.
>
v < x
> x +
%% v v v < y + ]
v v B > + o o)
x [}
<
0.1 E] 4 < 4 < > + (o] i
x o)
> + o
> > > - P
x X P dl5 ] ] ] ] 1 ]
0 0.1 0.2 0.3 0.4 05 06 0.7 08 0.9 1
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10 T T
107k , 3
llll|.."...
e —
107k E
5 T, | FIG. 11. For 3-COL the mean
07 L, E energies of several runs with
e(t) "::::. ] (Ng,N;)=(1,1000) are compared
) “, 1 to the results forN=10" from
107 F above fory=2 (lower curves, 56
different rung and y=4 (upper
curves, 54 different runs
10°F
107°f
10-7 L1 . R R | . . NP
10° 10’ 10° 10°
t (MC steps per spin)

was essentially no difference between the different runs, seis a property of the method used to solve a problem, while
Fig. 19. In each of these runs we averaged over 1000 differthe latter is a characteristic of the problem itself.
ent graphs.

The precise location of the freezing transition depends on
the algorithm used to determing(t). For example, finite
temperature MC methods give a higher value for the location We have also found interesting scaling relations for other
of the transition. This illustrates the difference between thequantities. For graph coloring, the energy as we have defined
freezing transition and the solvability transition. The formerit above measures the fraction of frustrated edges. Another

VIIl. OTHER RESULTS

10 T T
107k E
107} 3
10°E E
; FIG. 12. The energy as a func-
() ] tion of time for 56 runs with
10k i (Ng,N;)=(1,1000), for 3-COL
with y=2.
10°F 4
10°F
| 1] il
10-7 . L . R | ”l II.
10° 10' 107 10°

t (MC steps per spin)



PRE 59 RELAXATION IN GRAPH COLORING AND . .. 3993

FIG. 13. The standard error as
a function of time for 56 runs with
(Ng,N;)=(1,1000), for 3-COL

S(et)) 107°|

with y=2.
107°F
107
10
t (MC steps per spin)
possibility is to measure the fraction of frustrated spins, The Monte Carlo dynamics itself has interesting proper-
This quantity shows the same relaxation behavior, if used inies. Figure 21 shows the fractiar{t) of persistent spins,
the Metropolis algorithm instead @f i.e., those that have not yet been flipped, as a function of

It is also interesting to study the ratigs,o=2€/ €, time for 3-SAT. The data suggest a transition from an expo-
which is the connectivity of the sub-graph spanned by theyentially fast to a logarithmically slow decay as is in-
frustrated edges. Figure 20 suggests a transition fygpa  creased(this will be explored further elsewhereFor the
=1 for easy problems tgf,s>1 for harder. If the connec- |sing and Potts models on a square lattice, this quantity has

ity 2 would mean that all frustrated spins were connected ir[51 57.

chains.

10° ——————— ——

FIG. 14. The energy as a func-
tion of time for 54 runs with
(Ng,N,)=(1,1000), for 3-COL
with y=4.

=) 10 |

10

10 10 10 10
t (MC steps per spin)
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10 [ T T T L | T T T L L |
ole(t) 107 FIG: 15. T.he standard error as
) a function of time for 54 runs with
(Ng,N;)=(1,1000), for 3-COL
with y=4.
107 . -
10° 10’ 10° 10°
t (MC steps per spin)
IX. HEURISTIC ARGUMENTS FOR POWER LAW variables a state in the space of all solutions. Consider the
RELAXATION probability p(i) that a state hasunsatisfied constraints, so

thate=i/N. In analogy with expressiofl) for K-COL, this

In K-COL and K-SAT there are global barriers to local can be approximated by

improvement. In order to lower the frustration for a spin, we

have to make changes to many other, unfrustrated spins ] o

(compare Fig. 1 One way of explaining the relaxation is to psol(l):(l_pv)Mlp:;( i | 8
look at these barriers and see how long it takes to overcome

then. wherep, is the probability that a constraint is violated. The

In the following, we call a proposed assignment of Mie binomial factor

1

10 T T T T L | T T T T
10° £ 4
107 —— -
10k FIG. 16. The relaxation in
) 3-COL with only colorable graphs
3 allowed. No significant change
10k compared to Fig. 2 is observed.
From bottom to topy=1, 2, 3, 4,
5,6, 7, and 8.
107 ™, 3
10°} \-.... 3
107 : et
10° 10’ 10° 10°

t (MC steps per spin)
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£(t)

n

10

t (MC steps per spin)

10

represents the number of different ways to choose tine-
satisfied edges. Recall that for K-COp,=1/K and for
K-SAT p,=1/2%. In the approximation, we neglect all cor- transitions to states with energ/>e are forbidden. The
relations between the constraints, such as the presence pfobability of staying in a state with energyis then propor-
triangles and other regular structures in the graph to be cokional toEi"":epso,(i), while the probability for a transition to
an energye”<e is proportional topg.(€e”).

ored. In the following, only K-COl will be considered.

1 T T
o) 20
09| x 30
+ 50
* 80
08r | v 100
A 200
| < 500
0.7 > 1000
0.6
n(10% g5k
041
03

3995

FIG. 17. The relaxation in
2-COL with only colorable graphs
allowed. The behavior is similar
to that found for ferromagnetic
random graphsy=1 starts with
the lowest energy, followed by
=2,3,4,5,6,7,8. The small arrow
indicates they=8 data.

The Monte Carlo algorithm works by generating a new
state, and changing to this state if its energy is lower than or
equal to that of the current state. In the approximation we
assume that the probability that the new state has erergy
is proportional topg.(€e'). Given a state with energg, all

FIG. 18. Finite-size scaling
analysis of the fraction of prob-
lems for 3-COL where a zero en-
ergy ground state has not been
found before 18 MC updates per
spin. The system siz& ranges
from 20 to 1000, and the data is
plotted against the rescaled pa-
rameter /y.—1)NY", with 7,
=2.4 andv=3.75. A good fit is
obtained, except foN=20 and
30.
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TABLE Il. The approximate values of and« where the freez-

ing transition was found, determined using a simple finite-size scalThjs approximation ignores the detailed mechanisms of the
ing. Also shown are experimental valugg™ and ag*” for the  MC algorithm (which can only change a state loca/lyn-
solvability transition determined by Kirkpatrick and Selman and bystead we consider transitions between classes of states with
us. the same energy.

Using this transition matrix to evolve the states in time
K= 2 3 4 5 numerically, power law relaxation behavior is found, see Fig.
22. The exponent differs from that in our MC simulations.

K(;S;OL 0.2 2:4 6.7 11 One reason for this is that the MC simulations only allow
Ye 4.6 8.7 13.1 single-spin flips, while Eq(9) allows jumps between arbi-
K-SAT 1 4 8.4 16.7

I trary spin configurations — the global and the local energy
ag® 1.0 4.17 9.75 20.9 landscapes are different. We have performed simulations us-
ing a MC algorithm that changes the entire spin configura-
tion instead of just a single spin. The results indicate a
This process can be viewed as a Markov chain. The translower power law relaxation, with an exponent that is con-
sition matrix between states of different energy has elementgistent with Fig. 22. In contrast to the regular MC simula-

p;j given by the probability that states followed by statq: tions, the exponent here showed a weak dependence on sys-
tem size. The dependence was the same for both the

simulations and time evolution using E@®).
In the MC algorithmN attempts to flip a spin are made in
0, i<j, each time step. Inspired by statistics of the energy landscape,
we have made simulations where we require that ther&are

M i-1
_ . o acceptedspin flips in each time stefin T=0 simulations,
Pij= nzzi psol(n)_l_ngo PsolM). 1=1, (9 this means that time is not increased for flip attempts to
. . higher energy.Time was increased by N/for each change
Psol(j)s 1>] in the spin configuration. The power law relaxation behavior

did not change when this modified algorithm was used.
For these simulations, we can ignore all transitions to
o . . i states with higher energy. Since a single spin flip is unlikely
for i,j=0,... M. The transition probability;; can be writ- {5 decrease the energy by more than ¢see Fig. 2D we
ten in terms of the hypergeometric functigif;(a,b,c;z)  can also ignore transitions to states with engrgy — 1, and
[53] as consider a two-state system.
To estimate the time needed to go from stht® j=i
—1, we assume thai(i)/p(i—1) can be approximated by

: By : . p, M-i+l 1
Pii = Psol(i)2F1 1’I_M’I+1’pv—1 : Psol(')/psol(l—l)Zl_pU - (10)
1 T T T T T T T T T
x 1
L o] 10
09 0 90 ®
08} .
07 s
0.6 -3 A FIG. 19. The fractiony of
problems for 3-COL where a zero
n(10% g 5L 4 energy ground state has not been
found after 16 MC updates per
Al | spin, averaged over 1000 different
0. graphs of size 100, with 1, 10, or
100 restarts per graph.
03 .
02 ® .
0.1} .
&
w 1 Q 1 1 1 1 1 1 1
2 22 24 2.6 238 3 32 34 36 338 4



PRE 59 RELAXATION IN GRAPH COLORING AND . .. 3997

FIG. 20. The connectivity of
the graph spanned by the frus-
trated edges as a function of time.
Note the change fromy;,s=1 to
>1 as the problem difficulty in-
creases. The data are for 3-COL
with N=10°, averaged over 10
graphs. From bottom to topy
=2,3,4,5,6,7.

Yﬁust(t) 1.1

1.08

1.06

1.04

1.02

1 A Y A ol [PPSO 1 asacl L

0 100 200 300 400 500 600 700 800 900 1000
t (MC steps per spin)

Since the average time needed to pass from stadestate  energy are not allowed by tHE=0 Monte Carlo dynamics,

j=i—1 is given by the inverse of the transition probability we can neglect the energy partdf. The entropic part will,
per unit time, we then have however, be positive,
_p(i)+p(i_1)_ psol(i) 1 i
A=t Yoo tte @ Af= kT INNG) +keT NN =k T2 (1

psol(j )

for the time needed to go from statéo i — 1.

Another viewpoint is to consider the free energy barriersfor a transition from to j. The time needed to overcome this
Af in the problem. Since transitions to states with higherfree energy barrier is

0

10 —— T ———
]
P
107
107k
FIG. 21. For 3-SAT, the frac-
() 10 tion of persistent spins shows a
10°F similar transition as the energy.
The data are averages of 10 runs
on systems of 10spins and show
10t a=2 (bottom), 3, 4, and &(top).
10°F
107 . : .
10° 10' 107 10°

t (MC steps per spin)
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in £ X. CONCLUSIONS AND DISCUSSION
a_ s We have shown that there are additional transitions in the
behavior of two NPC problems — graph colorability and
2.7 . satisfiability. There is a freezing transition, and the relaxation
2 gl T changes from exponential to power law as the difficulty of
- the problem increases. These transitions occur for smaller
Z.5F - values of the parameterg and « than the transitions in
2.4 - . solvability and search cost.
- We also studied the effects of using only colorable
z2.3f \ graphs, and measured other quantities, such as the fraction of
. ) . > 1n & persistent spins for K-SAT, which also showed a transition.
1 2 3 i ™~ A simple heuristic argument for the form of the relaxation

, , behavior depending on entropy barriers was also given. The
_ FIG. 22. Log-log plot of the behavior of the Markov chain de- free energy barriers in these problems have a less pro-
fined by Eq.(9). nounced energy dependence than in other models. One can
compare them to systems where logarithmic relaxation has
Af iy 1 been found forT#0 andT=0 MC simulations, such as in
T"'GX[{ )~ psol( )

— —~—, 13 55], where a tiling model containing no randomness at all
ka psol(J) € (13 [ ] g 9

was studied. The main difference between these systems and
ours seems to be that they have local interactions and frus-
if i=j+1 ande=i/N. tration, whereas we have infinite-range interactions and frus-

By inverting Egs.(11) and (13), power law relaxation tration.

with an asymptotid ~* dependence can be obtained. This is 1he Problems with logarithmic relaxation are in some
justified for large y, where all free energy barriers have WaYs Simpler than the NPC problems studied here. Their

roughly the same size, but not ferbelow the freezing tran- ground states can always be found in polynomial time, and

sition. Similar difficulties also arise, e.g., for coarsening,they do not contain any difficult optimization problem. On

where arguments for relaxation usually are given for nucle:[he other hand, K-SAT and K-COL have ground states that
. g : : y 9 . may require exponential time to find. Our results show that it
ation, where a single domain grows or shrinks. It is then

Ustifiabl . h . lati h £ th can be easier to find approximate solutions to these hard
Justiiable to Invert the equation relating the energy of the, ohjems than for the easy problems giving logarithmic re-

domain and the time needed to shrink it. In the coalescencgyation, Of course, to actually find the ground state with the
regime, however, several such domains form and grow sepgac algorithm is very difficult for K-COL and K-SAT. What
rately before they coalesce. The inversion is then not althe NPC problems gain in finding an approximate solution is
lowed, even though the same relaxation behavior is found ifpst when it comes to finding the ideal, ground state solution.
simulations. Other problems where entropy barriers and logarithmic
The power law witht™! dependence approximately relaxation are found include the backgammon model intro-
matches the behavior of K-COL for critically constraingd  duced by Ritort[56] and the random-field Ising model
(see Table)l For overconstrained problems, the relaxation is[57,58. The backgammon model contains no energy barriers
slower thart . This could depend on the local energy land-at all, only entropy barriers, and can be soly&8] by con-
scape being different from the global when the problems arsidering random-walk models with entropy barriers. In our
overconstrained. The arguments above should be viewe@odels, the entropy barriers scale as the logarithm of the
only as a simplistic first approximation, and cannot be ex-energy. This means that the time needed to overcome the

pected to reproduce all important features of the numericaf€e energy barrier loses its exponential dependence and be-
results. comes algebraic, leading to power law relaxation. We have

The barriers in Eq(12), which are proportional to the also found this behavior in more general constraint satisfac-
logarithm of the energy, do not appear in any of the Coars'glon_protl)le.ms than K',COL and K-SA[50]. Relaxation be?
havior similar to that in our models has also been obtained

ening classes introduced by Lai, Mazenko, and VEB4|. y Campelloneet al. for a short-rangep-spin glass model
The difference seems to be that here there are entropy barfml These models should be studied further.

ers. That the entropy is high for low energies is explained b
the fact that the interactions are antiferromagnetic and thf('/l

variables are Potts spins. If each spin can hiveifferent  giqiont spins as well as of damage spreading and hysteresis in
values and the interactions are ferromagnetic, each Sa“Sf":s‘?rongly disordered systems are needed. Since hard optimi-
bc;nd can be satisfied iK different ways, while there are ,4iion problems are also spin glasses, a search for spin glass
K<—K choices for the unsatisfied ones. If the interactions ar@naracteristics such as aging and chaotic responses to small
antiferromagnetic, each satisfied bond Ids-K possibili-  perturbations in the hamiltonian may also be interesting. We
ties and the unsatisfiel. Since there are more satisfied are preparing a study of the energy landscapes of these and
bonds than unsatisfied, an antiferromagnetic problem is lesglated models. Investigating the connection between the to-
restricted, at least foK>2. As always, this reasoning ig- pology of the random graph and that of the energy landscape
nores all correlations between constraints in the problemmay also provide more insight into why NPC problems are
such as triangles in graphs. difficult.

We see several possibilities for future work in this field.
ore detailed studies of the behavior of the fraction of per-
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